Как работают токовые клещи


Как правильно работать токовыми клещами?

Узнайте, как правильно пользоваться токоизмерительными клещами. Порядок измерений и техника безопасности при работе инструментом.

Назначение большинства электроприборов известно многим людям: практически все знают, что измеряют вольтметром, а что амперметром. Мало у кого возникнет вопрос: «Для чего нужен паяльник?» Однако, даже не у каждого электрика в инструментарии есть токовые клещи. Этот инструмент является очень полезным и способен сильно сократить время электротехнических работ. Дополнительно этот прибор можно использовать для измерения напряжения и частоты тока в цепи. С его помощью также можно измерить мощность в цепи, фактическую нагрузку в сети и даже осуществить проверку электросчетчиков, например, сверку показаний с фактическим потреблением. В этой статье описывается принцип работы инструмента и рассказывается как пользоваться токоизмерительными клещами (ТК) на примере моделей DT 266 FT и Fluke. Эта инструкция будет применима практически ко всем подобным устройствам. Содержание:

Принцип работы

Как следует из названия ТК или клещи Дитце предназначены для измерения силы переменного тока в цепи без ее разрыва. В основе работы токоизмерительного инструмента лежит принцип простейшего трансформатора тока. В этом случае первичной обмоткой является шина или кабель с измеряемым током, а роль вторичной играет захват клещей, внутри которого расположена вторая многовитковая обмотка, намотанная на магнитопровод из ферромагнитного материала. Переменный ток в проводе (первичной катушке) создает переменное магнитное моле, силовые линии которого проходят через вторичную обмотку, возбуждая в ней ЭДС, пропорционально величине тока в первой катушке. Таким образом, измеряя возникающую ЭДС, можно найти силу тока в первой катушке (проводе).

Конструкция

Современные токоизмерительные клещи вне зависимости от производителя и модификации содержат следующие элементы: магнитопроводы с подвижной скобой-рычагом, переключатель диапазонов измерений, экран, выходные разъемы для щупов (в этом случае клещи могут быть использованы как обычный мультиметр) и кнопку фиксации токовых измерений (фото ниже).

Рисунок 1 – ТК S-line DT 266 FT

Большинство современных токовых измерителей также включают в себя внутренний трансформатор с диодным мостом. В этом случае выводы вторичной обмотки подключаются через шунт. В зависимости от диапазона измеряемых сил токов, токовые клещи могут быть одноручными (для напряжений до 1000 В) и двуручными с дополнительными изолированными ручками (для напряжений от 2 до 10 кВ включительно). Токоизмерительные устройства, предназначенные для измерений более 1 кВ, имеют длину изолятора на менее 38 см, а рукояток – не менее 13 см.

Как правило, на корпусе прибора указывается категория безопасности и максимальный измеряемый ток. Например:

  • CAT III 600 V – это означает, что прибор защищен от кратковременных бросков напряжения внутри оборудования при эксплуатации в стационарных сетях с напряжением до 600 В.
  • CATIV 300 V – это означает, что прибор защищен от бросков напряжения внутри оборудования первичного уровня электроснабжения напряжением до 300 В. Примером такого оборудования может служить обычный электрический счетчик.

Правила безопасности при работе

Токоизмерительные клещи разрешается использовать только в закрытых помещениях или на открытых пространствах в сухую погоду. Измерять силу тока можно как на кабелях, покрытых изоляцией, так и на оголенных. Перед использованием человеку необходимо надеть защитные перчатки, а под ноги подложить диэлектрическое основание и надеть специальные ботинки.

Порядок измерений

Как правило, использование токоизмерительных клещей не вызывает особых трудностей. Перед тем, как пользоваться инструментом, стоит уделить большое внимание технике безопасности, о чем было сказано ранее.

Как правильно пользоваться токоизмерительными клещами:

  1. Установить требуемый диапазон на переключателе.
  2. Нажать на кнопку раскрытия магнитопровода.
  3. Обхватить одиночный проводник в сети переменного или постоянного тока (если такая возможность поддерживается прибором).
  4. Расположить токовые клещи перпендикулярно направлению провода.
  5. Снять показания с дисплея.

Часто трудность использования токоизмерительных клещей заключается в выделении одиночного проводника: при попытке снять показания с обычного кабеля, идущего из розетки, на экране должен высветиться ноль. Это происходит потому, что токи фазного провода и нулевого проводника равны по величине и противоположны по направлению. Следовательно, магнитные потоки, создаваемые ими взаимно компенсируются. Если же токовые показания отличны от нуля, то это свидетельствует о наличии утечки тока в цепи, величина которой равна полученному значению. Поэтому для измерений нужно найти место, где провода разделяются и выделить одиночную жилу. В качестве такого места можно использовать распределительный щит или место подключения фазового провода к автоматическому выключателю. Тем не менее это не всегда можно сделать, что ограничивает область применения токоизмерительных клещей.

Если в процессе измерений на экране высвечивается единица, то это говорит о том, что значение силы тока в проводе находится за пределами диапазона измерений. В этом случае необходимо увеличить диапазон токовых измерений с помощью переключателя. При проведении измерений в труднодоступных местах можно использовать кнопку Hold. С ее помощью можно зафиксировать результат последнего измерения и посмотреть его, убрав клещи. Нажав на Hold второй раз, можно сбросить значение.

Наглядно увидеть, как работать токоизмерительными клещами, Вы можете на видео инструкции ниже:

Правильное использование инструмента

Полезная «хитрость»

Если требуется измерить малое значение силы тока, то необходимо сделать несколько витков провода на разомкнутом магнитопроводе, а переключатель диапазонов установить на минимум. После этого необходимо снять показания, а для определения фактического значения разделить полученное число на количество намотанных витков.

Пример использования

Приведем пример того, как пользоваться токоизмерительными клещами при измерении нагрузки в сети 220 В, например в квартире. В этом случае переключатель необходимо установить в положение AC 200. Далее необходимо токовыми клещами обхватить изолированный проводник и снять показания. После этого полученную величину силы тока нужно умножить на напряжение в сети 220 В. Например, если прибор показывает 5 А, то потребляемая мощность в сети составит P = U * I = 5 * 220 = 1100 Вт или 1.1 кВт. Полученное значение можно использовать для проверки работы приборов учета электроэнергии.

Напоследок предлагаем просмотреть видео, на котором наглядно показывается, как пользоваться токовыми клещами DT-266 и Fluke 302+, достаточно популярными на сегодняшний день:

DT-266

Fluke 302+

Вот и вся инструкция о том, как самому пользоваться токоизмерительными клещами. Как Вы видите, ничего сложного нет. Главное — соблюдать меры безопасности и внимательно подходить к измерениям. Надеемся, что наши советы и наглядная видео инструкция доступно объяснили Вам порядок действий!

Будет интересно прочитать:

  • Как использовать мультиметр – инструкция для чайников
  • Как проверить правильность работы счетчика электроэнергии
  • Список инструментов электрика

Правильное использование инструмента

DT-266

Fluke 302+


Нравится0)Не нравится0)

Как использовать токоизмерительные клещи? Полное руководство для начинающих

Итак, вы встретили токоизмерительные клещи, суперзвезду всех мультиметров, о которых все говорят? И теперь ищете руководство, которое поможет вам правильно использовать его для измерения силы переменного и постоянного тока? Вы хотите владеть им, но имеет смысл сначала увидеть, как он работает, верно?

Что ж, вы попали в нужное место. Это полное руководство по , как использовать токоизмерительные клещи , структурированное с учетом потребностей начинающих пользователей и новичков.

Научиться работать с токоизмерительными клещами легко и просто. Вы уже на полпути, если знаете, как работать с универсальным мультиметром. Но важно знать небольшие различия между ними, что поможет вам принимать обоснованные решения при тестировании и устранении неполадок.

Профессиональный техник знает, как работают токоизмерительные клещи, и , как лучше всего использовать их в рабочей среде.

Дополнительные инструкции по использованию мультиметра:

Что такое клещи?

Токоизмерительные клещи - это усовершенствованный вариант обычного мультиметра с основным отличием в виде зажимной конструкции наверху, которая позволяет бесконтактно измерять ток и напряжение.

Вы можете «зажать» эту конструкцию вокруг проводников (например, провода), чтобы определить ток, проходящий через нее.

Токоизмерительные клещи Fluke 325

Исходя из этого основного принципа, современные токоизмерительные клещи имеют функции, позволяющие измерять несколько величин, функции, упрощающие поиск и устранение неисправностей и анализ, и, в конечном итоге, дополнительные меры безопасности.

Так как вам не нужно вручную подключать измерительные щупы / провода к цепям под напряжением, а также не нужно отключать систему для измерения, токоизмерительные клещи быстро стали одним из самых важных инструментов в жизни электрика .

Основные различия между токоизмерительными клещами и цифровым мультиметром

Ниже приведены отличия токоизмерительных клещей от цифрового мультиметра:

  • В основном используются для измерения силы постоянного и переменного тока
  • Бесконтактное измерение количества
  • Более низкое разрешение (только до сотых долей) единицы)

Токоизмерительные клещи и цифровой мультиметр (DMM) обычно идут рука об руку, поскольку вы не можете использовать их взаимозаменяемо для некоторых приложений тестирования.

См. Также: Обзоры лучших цифровых мультиметров

Основные компоненты и структура токоизмерительных клещей

Прежде чем мы перейдем к использованию токоизмерительных клещей, целесообразно сначала изучить его основные компоненты.

Ниже показано изображение токоизмерительных клещей Fluke 376. Мы рассмотрим каждый компонент один за другим, как описано Fluke в одном из сообщений блога.

Это значительно упростит обучение тому, как измерять ток с помощью токоизмерительных клещей .

Основные компоненты токоизмерительных клещей. Источник: Fluke Corporation Основные компоненты токоизмерительных клещей. Источник: Fluke Corporation

Что касается изображения выше, то вот список основных компонентов токоизмерительных клещей. Мы упомянули детали, которые являются эксклюзивными для этой модели.

  1. Зажим - конструкция в виде челюсти, которая наматывается на проводники для обнаружения и измерения тока (и других величин)
  2. Тактильный барьер - Защищает пальцы и руки от ударов
  3. Удержание - Замораживает показания дисплея до повторного нажатия
  4. Наберите - Измените количество и разрешение
  5. Экран дисплея - Обычно ЖК-дисплей
  6. Кнопка подсветки (дополнительно)
  7. Кнопка Мин-макс - Для измерения максимальной, наименьшей и средней величины величин (доступно в большинстве моделей)
  8. Кнопка пускового тока - Отключает пусковой ток от вашего измерения (опция)
  9. Кнопка переключения - Для выбора дополнительных функций на шкале
  10. Рычаг - Используется для освобождения зажима
  11. Метки совмещения - В идеале проводник должен находиться между этими двумя метками
  12. Это, 1 3 и 14 - все входные гнезда.

Ясно, что губка - это самая большая разница в токоизмерительных клещах.В зависимости от модели, которую вы решите купить (обратитесь за помощью к нашему руководству по лучшим токоизмерительным клещам ), эти компоненты и функции могут отличаться.

Как токоизмерительные клещи измеряют ток?

Как было сказано выше, токоизмерительные клещи работают по принципу трансформаторного действия.

Зажим или зажим токоизмерительных клещей состоит из ферритового сердечника с медными обмотками вокруг него. Этот сердечник и его обмотки действуют как вторичная обмотка (как в трансформаторе). Итак, когда эта похожая на челюсть структура «зажата» вокруг проводника с током, она обнаруживает ток и связывает его.

Этот связанный ток затем передается с ферритового сердечника на шунт входа тестера. Поскольку этот связанный ток очень мал (обычно 1/1000 th ), тестер регулирует это значение путем умножения и предоставления точной величины тока.

Именно благодаря этому принципу токоизмерительные клещи могут измерять большие величины (в тысячах) тока.

Другими словами, если вы измеряете проводник с током в 1 ампер, тестер определит его как 1 миллиампер, а затем преобразует его в исходное значение.Это значение отображается вам на экране.

Подробнее: Обзоры лучших клещей

Как использовать клещи?

Поскольку аналоговые модели сегодня широко не используются и рекомендуется покупать цифровые модели, мы сосредоточимся только на работе цифровых клещей.

Кроме того, в следующем руководстве шаги относятся только к

.

DC бесконтактные токовые клещи для осциллографа DIY

0.0 Базовое введение

Иметь осциллограф - это очень хорошо. Это очень полезный инструмент. Но с помощью базовых пробников вы могли наблюдать только значения напряжения. Что, если мы хотим наблюдать за током ???

Существует много типов пробников осциллографов, каждый из которых имеет свою область применения. Пробник обеспечивает очень важную связь между измеряемым объектом и осциллографом. В этом видео мы поговорим о токовых пробниках, а точнее о неинвазивных токовых пробниках, что означает, что нам не нужно напрямую подключать их к разомкнутой цепи, чтобы проводить измерения.Токи можно измерить путем измерения напряжения на известном сопротивлении. Главный недостаток заключается в том, что для установки этого шунтирующего резистора необходимо разомкнуть цепь. Мы видели такой измеритель тока в одном из моих прошлых руководств по мультиметру на базе Arduino. У вас есть ссылка на этот учебник ниже.

См. Руководство по мультиметру Arduino здесь:

В этом видео мы сделаем что-то другое, потому что это дополнительное сопротивление также может повлиять на измерение своим напряжением нагрузки.Токи также можно измерять с помощью токового пробника, также известного как токовые клещи. У этих пробников нет недостатков шунтирующих резисторов, как мы только что описали. Токовый зонд просто зажимается над токоведущим проводом, и цепь не нужно размыкать, что является огромным преимуществом.
Токовые пробники можно условно разделить на два типа: токовые клещи переменного и постоянного тока. Я попытаюсь объяснить, как работают оба этих типа. Чтобы понять это, давайте сначала взглянем на мои токовые клещи hantek, которые я только что получил.Это очень полезный инструмент.


Чем как доза это работает? Для этого я сначала открою корпус и осмотрю его компоненты. Как я догадался, схема довольно простая. На наконечнике находится металлический магнитный сердечник, который пропускает через него магнитный поток. Здесь тоже должен быть какой-то датчик и все. Затем у нас есть основная схема, в которой мы, вероятно, найдем усилитель и схему селектора шкалы, поскольку у нас есть две разные шкалы на выбор. Вот выходной сигнал осциллографа.Итак, зная эти компоненты, позвольте мне теперь немного объяснить, как все это работает.

Купите зажим hanteck здесь:

1.0 Токовые клещи переменного тока

Как я уже сказал, токовые пробники делятся на два типа: токовые клещи переменного и постоянного тока. Токовые клещи переменного тока в основном представляют собой трансформатор. Первичная обмотка - это проводник, по которому проходит измеряемый ток, в данном случае простой провод, а вторая обмотка закреплена на сердечнике и подключена к осциллографу. Это пассивный пробник, работающий только с переменным током.Обычный трансформатор не справляется с постоянным током. Таким образом, принцип действия датчиков постоянного тока сильно отличается от датчиков переменного тока. Давайте сначала посмотрим, как создать собственный пробник переменного тока. Все, что нам нужно, это сердечник трансформатора и немного медного провода для создания обмоток.


Все, что нам нужно, это сердечник трансформатора и немного медной проволоки для создания наших обмоток. Ток, проходящий через измеряемый провод, будет создавать вокруг него магнитное поле, как говорит нам закон электромагнитного поля. Благодаря ферритовому сердечнику зажима это магнитное поле будет направлено через этот ферритовый сердечник.Поскольку ток является переменным, магнитный поток изменится, и это приведет к току, индуцированному во вторичной обмотке, как мы можем видеть на фотографии выше. Если индуцируется ток, между двумя концами обмотки будет падение напряжения. Затем мы могли бы измерить это падение напряжения с помощью нашего осциллографа.


Напряжение на вторичном выходе равно напряжению на первичной обмотке, умноженному на соотношение между током первичной обмотки и током вторичной обмотки.Допустим, мы не знаем ни одного из этих значений. Но с помощью мультиметра переменного тока мы контролируем ток через измеряемый провод и одновременно выходное напряжение на осциллографе. Мы делаем несколько измерений и строим график, чтобы узнать шкалу зажима.



Вы можете купить такой модуль напрямую за несколько долларов, как это (фото ниже). Этот модуль уже дает нам тогда шкалу выходного напряжения 15 А на вольт. Итак, у нас должно быть 100 мВ для тока 1,5 А, проходящего через этот провод.Я подключаю этот трансформатор к осциллографу и подаю сигнал переменного тока через провод. Вот и все, на моем осциллографе есть переменный ток. Довольно просто, верно.


Если мы построим собственный трансформатор, мы должны быть осторожны при вычислении масштаба в зависимости от количества сделанных нами обмоток и зная, что первичная обмотка будет только одна, поскольку через сердечник будет проходить только один провод. Но если я приложу к этой цепи постоянный ток, то на моем осциллографе будет отметка.Это потому, что ток в трансформаторе индуцируется только при изменении магнитного потока. Таким образом, постоянное магнитное поле не наводит ток в обмотку, поэтому на выходе будет 0.


1.1 Создайте токовые клещи переменного тока


Нам понадобится

Гнездовой разъем BNC LINK eBay
Зажим трансформатора LINK eBay
Конденсатор 10 пФ LINK eBay
Резистор 9 м LINK eBay


Загрузите схему здесь:

2.0 Токовые клещи постоянного тока

Итак, постоянное магнитное поле не наводит ток в обмотку, поэтому на выходе будет 0.Так как же нам измерить и наблюдать постоянный ток? В этом типе зонда мы также будем использовать ферритовый сердечник, который будет переносить магнитное поле. Сердечник снабжен воздушным зазором, в котором будет находиться датчик, в данном случае датчик Холла, который измеряет магнитный поток в сердечнике. Так что теперь нам больше не нужен переменный ток, так как мы можем напрямую измерить значение магнитного потока. Ток в первичном проводе, который является измеряемым проводом, намагнитит сердечник. Это магнитное поле измеряется датчиком.

.Токоизмерительные клещи

Принцип работы Контрольно-измерительные приборы

Токоизмерительные клещи с трансформатором тока для измерения переменного тока

Токоизмерительные клещи с трансформатором тока оснащены жесткими губками из ферритового железа. Зажимы индивидуально обернуты витками медной проволоки. Вместе они образуют магнитопровод во время измерений.

Их основная работа похожа на работу трансформатора. Он работает с одним первичным витком или обмоткой, которая почти во всех случаях является измеряемым проводником.Катушки вокруг губок служат вторичной обмоткой трансформатора тока.

Ток, протекающий по проводнику, создает переменное магнитное поле, которое вращается вокруг него. Это поле концентрируется железным сердечником зажима, вызывая протекание тока во вторичных обмотках счетчика. Мера величины магнитного поля, проходящего через проводник (или любую поверхность), называется магнитным потоком и обозначается греческой буквой фи, Φm.

Сигнал пропорционален отношению витков.На вход измерителя подается гораздо меньший ток из-за соотношения количества вторичных обмоток (намотанных вокруг губок зажима) к количеству первичных обмоток, намотанных вокруг сердечника.

Если, например, вторичная обмотка имеет 1000 обмоток, то вторичный ток равен 1/1000 тока, протекающего в первичной. Таким образом, 1 ампер тока в измеряемом проводе даст 0,001 ампера или 1 миллиампер тока на входе измерителя. С помощью этого метода можно легко измерить гораздо большие токи, увеличив количество витков во вторичной обмотке.

Внутри ток, протекающий в проводнике, может быть измерен либо как ток (некоторые старые аксессуары зажимов подключаются к токовым гнездам цифрового мультиметра), либо может быть преобразован в напряжение. Большинство клещей теперь имеют выход в мВ.

Токоизмерительные клещи с трансформатором тока реагируют только на сигналы переменного тока.

Токоизмерительные клещи, использующие эффект Холла для измерений переменного и постоянного тока.

Токоизмерительные клещи с эффектом Холла могут измерять как переменный, так и постоянный ток в диапазоне килогерц (1000 Гц).

Подобно трансформаторам тока, токоизмерительные клещи на эффекте Холла используют жесткие железные губки для концентрации магнитного поля, окружающего измеряемый проводник.

В отличие от токоизмерительных клещей с трансформатором тока, клещи не наматываются медными проводами. Вместо этого магнитное поле, создаваемое проводником, фокусируется через один или несколько зазоров в сердечнике после зажатия губок вокруг проводника.

Обратите внимание на точку, где встречаются концы губок токоизмерительных клещей с эффектом Холла.

В месте соприкосновения концов губок токоизмерительных клещей на эффекте Холла существует зазор, в результате чего создается воздушный карман, через который магнитное поле (или магнитный поток) должно перепрыгивать. Этот зазор ограничивает магнитный поток, так что сердечник не может насыщаться.

В отличие от этого, зажимы трансформатора тока переменного тока в закрытом состоянии находятся заподлицо. В открытом состоянии на концах губок видны поверхности оголенного металлического сердечника.

В этом промежутке, покрытом тонкой пластмассовой формовкой, находится полупроводник, известный как датчик эффекта Холла - преобразователь, который изменяет свое выходное напряжение, реагируя на магнитные поля, в данном случае магнитное поле измеряемого проводника или провода.Его цель - напрямую измерить магнитный поток. Затем выходное напряжение датчика усиливается и масштабируется, чтобы представить ток, протекающий по проводнику, который находится внутри зажимов зажима.

Когда ток течет через измеряемый проводник, железный сердечник, образованный зажимами токоизмерительных клещей на эффекте Холла, позволяет магнитному полю легко проходить сквозь него - фактически, легче, чем воздух.

Когда магнитное поле (поток) достигает маленького воздушного зазора в кончиках губок, поле должно перепрыгнуть через этот зазор.Поскольку зазор невелик, поле остается сконцентрированным в зазоре, и датчик Холла, который находится в зазоре, выдает напряжение, пропорциональное магнитному потоку в зазоре, которое зажим преобразует в показания тока.

В устройствах на эффекте Холла постоянные магнитные поля также концентрируются через сердечник, как постоянный магнит, прилипший к железу. Из-за постоянного магнитного поля земли и возможности других магнитных полей вблизи места измерения эти зажимы требуют «обнуления» показаний перед выполнением измерения, чтобы устранить смещения.

Американскому физику Эдвину Холлу (1855-1938) приписывают открытие эффекта Холла в 1879 году.

Источник: Fluke

Также прочтите: Что такое клещи?

.

Обзор токоизмерительных клещей

Цифровые токоизмерительные клещи переменного тока

Токоизмерительные клещи или просто «токоизмерительные клещи» - это прибор, который используется для измерения тока, протекающего по проводнику. Токоизмерительные клещи переменного тока в основном состоят из трансформатора тока в зажимах, обычно это стержень ТТ. Показания будут отображаться по принципу трансформатора тока.

В то время как токоизмерительные клещи постоянного тока совсем другое дело. Для измерения силы тока в нем используется датчик Холла.


Как работают токоизмерительные клещи переменного тока?

Когда инструмент «зажат» на проводнике, сам проводник действует как первичный, и магнитный поток из-за тока, протекающего через проводник, отсекает вторичную обмотку трансформатора тока.

Ток во вторичной обмотке трансформатора тока преобразуется в напряжение с помощью преобразователя тока в напряжение. Этот сигнал поступает на аналого-цифровой преобразователь. Обычно используется микроконтроллер, который управляет схемой дисплея для текущего чтения.

Блок-схема токоизмерительных клещей переменного тока

Как работают токоизмерительные клещи постоянного тока?

В отличие от переменного тока, трансформаторы тока нельзя использовать для измерения постоянного тока. Поэтому для этой цели используется датчик Холла. Используемый элемент Холла реагирует на магнитный поток из-за постоянного тока в проводнике, который создает напряжение на элементе.

Развиваемое напряжение пропорционально току в проводнике. Таким образом, измеряя напряжение, можно определить ток.

Блок-схема токоизмерительных клещей постоянного тока

Датчик на эффекте Холла и на эффекте Холла

Датчик на эффекте Холла

Эффект Холла - это создание разности потенциалов в электрическом проводнике, поперечной току в проводнике, и магнитного поля, перпендикулярного току. Этот эффект был открыт Эдвином Холлом в 1879 году.

Датчик эффекта Холла - это преобразователь, который вырабатывает напряжение, находясь под воздействием магнитного поля.Носители заряда испытывают силу, называемую силой Лоренца. Благодаря этой силе заряды распределяются по поверхности материала, оставляя одинаковые и противоположные заряды на противоположной поверхности, что составляет разность потенциалов, существующую, пока магнитное поле является постоянным.

В токоизмерительных клещах постоянного тока датчик Холла используется в качестве магнитометра. Возникающее таким образом напряжение пропорционально магнитному полю и, следовательно, току.

Несмотря на то, что токоизмерительные клещи в основном используются для измерения тока, в эти приборы добавлена ​​функция измерения напряжения, сопротивления, частоты и т. Д.

.

Смотрите также