При проведении измерений напряжения, вольтметр или мультиметр должен подключаться к определенному участку электрической цепи параллельным образом, а при измерении силы тока, амперметр располагают последовательно. Поэтому для замера силы тока производят искусственный разрыв цепи и подключают к нему устройство для измерений.
Чтобы упростить и ускорить процесс, используют токоизмерительные клещи, работающие по абсолютно другому методу. Они позволяют произвести замер интенсивности электромагнитного поля, которое всегда появляется вокруг любого проводника. В этом материале будут разобраны токовые клещи постоянного тока, каков принцип их работы и какие виды токовых клещей бывают.
Токоизмерительные клещи — это инструмент позволяющий замерять силу электротока не создавая разрывов цепи. К примеру, при использовании мультиметра при таком замере, придется всякий раз разрывать провод, что неудобно на практике.
Выглядят они как простой мультиметр с клещами типа «прищепка» сверху. Эту самую прищепку цепляют на провод, и прибор дает все показания на своем дисплее.
Первые токоизмерительные приборы подобного рода представляли собой своеобразные трансформаторы, к которым подключался обычный амперметр. Сами прищепки, являющиеся видимой частью прибора, одновременно представляют собой первичную обмотку трансформатора. При помещении в нее проводника, по которому течет ток, из-за своего электромагнитного поля он будет индуцироваться на эту обмотку. После этого электроток пойдет на вторичную обмотку. С нее и будут сниматься показатели.
Важно! Первые виды этих приборов были простым дополнением к измерительным приборам и помогали удобнее фиксировать измеряемый провод.
Значения, которые показывал амперметр, приходилось рассчитывать дополнительно, поскольку требовалось учесть коэффициент трансформации. Еще один нюанс: работа только с переменным током, так как с постоянными значениями трансформаторы не работают.
Современные токовые клещи могут работать с любыми видами электротока, но для измерения постоянных значений вместо амперметра они используют датчик Холла, позволяющий фиксировать электромагнитное поле и его напряженность.
Разновидности клещей зависят от внешнего вида, схемы исполнения и типа вывода результатов. Обычно их подразделяют на следующие категории:
Есть еще одна разновидность этого прибора, которую стоит вынести в отдельный раздел. В зависимости от специфики применения, токовые клещи бывают для постоянного и переменного тока. Действие первых основано на эффекте Холла. Из-за этого они сильно дороже, но качественней и надежней. Практически все модели для постоянного тока включают в себя измерители переменного напряжения.
Переменный электроток измеряется по принципу трансформатора, поэтому соответствующие модели дешевые. Также они не могут производить замер постоянного напряжения.
Важно! Разновидности этой категории не отличаются внешне. Для практичности и надежности рекомендуется брать прибор, имеющий делать измерение для электротока постоянной и переменной величины
Конструкция токовых клещей предполагает наличие:
Для измерения параметров постоянного тока первым делом нужно выставить диапазон его работы. Дальнейшая пошаговая инструкция имеет следующий вид:
Значение может получиться с отрицательным знаком. Это определяется направлением течения тока. На губках прибора могут быть стрелки, которые показывают направление движения электротока. Следовательно, если прибор перевернуть, то будет показано значение без минуса.
Для замера переменного электротока можно взять простую лампочку и подключить ее к сети на 220 Вольт. Дальнейший порядок таков:
При работе с подобным оборудованием следует придерживаться общих правил безопасности по эксплуатации электроизмерительных приборов, несмотря на то, что использование токоизмерительных клещей — процедура безопасная. Запрещается превышать величину выбранного диапазона электротока и менять диапазон в процессе замера. Нельзя также держаться незащищенными руками за оголенные щупы, которые не защищены диэлектриком.
Перед началом пользоваться любым прибором следует тщательно изучить пособие по эксплуатации и все инструкции. Это помогает не только не подвергать себя опасности, но и продлить срок службы устройства. Это очень важно, поскольку в пособии описывается настройка прибора, режимы его работы, принципы его безопасного использования. Более того, в таких мануалах рассказывается, в течение какого срока и каким образом нужно делать калибровку устройства. Делается она в специализированных центрах, а нужна для повышения точности измеряемых параметров.
Таким образом, токоизмерительные клещи для постоянного тока — это удобный и практичный инструмент для определения силы электротока без размыкания проводов, как это делается в случае с амперметром или мультиметром. С его помощью можно в любой момент измерить электроток в автомобиле и его проводке, дома и на объектах прокладки, монтажа или обслуживания электрической сети.
Итак, вы встретили токоизмерительные клещи, суперзвезду всех мультиметров, о которых все говорят? И теперь ищете руководство, которое поможет вам правильно использовать его для измерения силы переменного и постоянного тока? Вы хотите владеть им, но имеет смысл сначала увидеть, как он работает, верно?
Что ж, вы попали в нужное место. Это полное руководство по , как использовать токоизмерительные клещи , структурированное с учетом потребностей начинающих пользователей и новичков.
Научиться работать с токоизмерительными клещами легко и просто. Вы уже на полпути, если знаете, как работать с универсальным мультиметром. Но важно знать небольшие различия между ними, что поможет вам принимать обоснованные решения при тестировании и устранении неполадок.
Профессиональный техник знает, как работают токоизмерительные клещи, и , как лучше всего использовать их в рабочей среде.
Дополнительные инструкции по использованию мультиметра:
Токоизмерительные клещи - это усовершенствованный вариант обычного мультиметра с основным отличием в виде зажимной конструкции наверху, которая позволяет бесконтактно измерять ток и напряжение.
Вы можете «зажать» эту конструкцию вокруг проводников (например, провода), чтобы определить ток, проходящий через нее.
Токоизмерительные клещи Fluke 325
Исходя из этого основного принципа, современные токоизмерительные клещи имеют функции, позволяющие измерять несколько величин, функции, упрощающие поиск и устранение неисправностей и анализ, и, в конечном итоге, дополнительные меры безопасности.
Так как вам не нужно вручную подключать измерительные щупы / провода к цепям под напряжением, а также не нужно отключать систему для измерения, токоизмерительные клещи быстро стали одним из самых важных инструментов в жизни электрика .
Ниже приведены отличия токоизмерительных клещей от цифрового мультиметра:
Токоизмерительные клещи и цифровой мультиметр (DMM) обычно идут рука об руку, поскольку вы не можете использовать их взаимозаменяемо для некоторых приложений тестирования.
См. Также: Обзоры лучших цифровых мультиметров
Прежде чем мы перейдем к использованию токоизмерительных клещей, целесообразно сначала изучить его основные компоненты.
Ниже показано изображение токоизмерительных клещей Fluke 376. Мы рассмотрим каждый компонент один за другим, как описано Fluke в одном из сообщений блога.
Это значительно упростит обучение тому, как измерять ток с помощью токоизмерительных клещей .
Основные компоненты токоизмерительных клещей. Источник: Fluke Corporation Основные компоненты токоизмерительных клещей. Источник: Fluke Corporation
Что касается изображения выше, то вот список основных компонентов токоизмерительных клещей. Мы упомянули детали, которые являются эксклюзивными для этой модели.
Ясно, что губка - это самая большая разница в токоизмерительных клещах.В зависимости от модели, которую вы решите купить (обратитесь за помощью к нашему руководству по лучшим токоизмерительным клещам ), эти компоненты и функции могут отличаться.
Как было сказано выше, токоизмерительные клещи работают по принципу трансформаторного действия.
. Учебное пособие по мультиметру Включает:
Основы работы с измерителем Аналоговый мультиметр Как работает аналоговый мультиметр Цифровой мультиметр DMM Как работает цифровой мультиметр Точность и разрешение цифрового мультиметра Как купить лучший цифровой мультиметр Как пользоваться мультиметром Измерение напряжения Текущие измерения Измерения сопротивления Тест диодов и транзисторов Диагностика транзисторных цепей
Часто бывает необходимо знать, как измерить ток с помощью мультиметра.Измерения тока выполнить легко, но они выполняются несколько иначе, чем измерения напряжения и другие измерения. Однако измерения тока часто необходимо проводить, чтобы выяснить, правильно ли работает цепь, или чтобы обнаружить другие факты, связанные с ее потреблением тока.
Ток - один из основных электрических / электронных параметров, поэтому часто необходимо измерить ток, протекающий в цепи, чтобы проверить ее работу.
Измерения тока можно выполнять с помощью различных измерительных приборов, но наиболее широко используемым измерительным оборудованием для измерения тока является цифровой мультиметр. Это испытательное оборудование широко доступно по очень разумным ценам.
Измерения тока выполняются иначе, чем измерения напряжения и других измерений.Ток состоит из потока электронов вокруг цепи, и необходимо иметь возможность контролировать общий поток электронов. В очень простой схеме показана ниже. В нем есть батарейка, лампочка, которую можно использовать как индикатор, и резистор. Чтобы изменить уровень тока, протекающего в цепи, можно изменить сопротивление, а количество протекающего тока можно измерить по яркости лампы.
Простая схема для измерения токаПри использовании мультиметра для измерения тока единственный способ, который можно использовать для определения уровня протекающего тока, - это разрыв цепи, чтобы ток проходил через измеритель.Хотя временами это может быть сложно, это лучший вариант. Типичное измерение тока можно выполнить, как показано ниже. Из этого видно, что цепь, в которой протекает ток, должна быть разорвана, а мультиметр вставлен в цепь. В некоторых схемах, где часто может потребоваться измерение тока, могут быть добавлены клеммы с перемычкой для облегчения измерения тока.
Как измерить ток с помощью мультиметраЧтобы мультиметр не влиял на работу цепи, когда он используется для измерения тока, сопротивление счетчика должно быть как можно меньшим.Для измерений около ампера сопротивление метра должно быть намного меньше ома. Например, если измеритель имел сопротивление в один Ом и протекал ток в один ампер, то на нем возникло бы напряжение в один вольт. Для большинства измерений это было бы неприемлемо высоким. Поэтому сопротивление счетчиков, используемых для измерения тока, обычно очень низкое.
Использовать аналоговый измеритель для измерения электрического тока довольно просто.Есть несколько незначительных отличий в способах измерения тока, но используются те же основные принципы.
При использовании аналогового мультиметра можно выполнить несколько простых шагов:
Чтобы измерить ток цифровым мультиметром, можно выполнить несколько простых шагов:
Следуя этим шагам, очень легко измерить ток с помощью любого цифрового мультиметра.
Самый очевидный метод измерения тока с помощью мультиметра - разорвать цепь и быстро измерить измеритель внутри цепи.Однако это не единственный метод, который можно использовать.
Есть несколько методов, которые могут быть реализованы, которые не требуют разрыва цепи и последовательного подключения счетчика.
Эти методы часто используются там, где важно не разорвать цепь, и используются методы, которые тем или иным образом определяют ток.
Точность часто может быть почти такой же хорошей, как при включении измерителя в цепь, но для этого могут потребоваться уже установленные компоненты или использование датчиков других типов.
Этот метод измерения тока может дать некоторые преимущества при некоторых обстоятельствах, когда предполагается, что ток может потребоваться регулярно измерять в цепи.
Этот метод измерения тока предполагает включение в схему небольшого резистора подходящего номинала. Обычно один конец резистора находится под потенциалом земли, чтобы избежать риска случайного замыкания на землю высокого напряжения при проведении теста.
Метод измерения тока путем вставки в цепь последовательного резистора.Путем измерения напряжения на резисторе можно легко рассчитать ток.
Например, резистор 10 Ом вставлен в цепь и на нем обнаружено значение 100 мВ, тогда, используя закон Ома, можно сделать вывод, что ток составляет V / R = 0,1 / 10 = 10 мА.
При использовании этого метода измерения тока значение резистора должно быть достаточно точным для проведения измерений.Любой допуск на резистор e даст аналогичный допуск, но не при измерении. К счастью, многие измерения в этой ситуации не требуют предельной точности, и поэтому даже 10% резисторов будут достаточно точными - 2% также может быть адекватным в зависимости от необходимых допусков.
В показанном случае последовательный резистор, используемый для измерения тока, помещен рядом с землей, а также в обход конденсатора для обхода любого сигнала на землю. Это особенно важно, если схема используется на радиочастотах, РЧ, поскольку это поможет предотвратить распространение любого сигнала по выводам измерительного прибора.
Если невозможно каким-либо образом прорваться в цепь, можно использовать датчик тока.
Датчики тока обычно бывают в виде датчика, который размещается вокруг проводника с током. Он может обнаруживать ток, протекающий в проводнике, и таким образом давать показания.
Эти датчики часто входят в состав законченного измерителя, поэтому часто невозможно использовать стандартный мультиметр для этого типа теста.
Существует несколько различных типов датчиков / измерителей, которые можно использовать в этом методе измерения тока.
Существуют и другие аналогичные методы измерения тока с использованием датчиков, но токовые клещи и датчики на эффекте Холла являются наиболее распространенными.
Часто бывает необходимо измерить переменный ток. Хотя для измерения переменного тока используются те же основные шаги, что и при нормальном измерении постоянного тока, есть несколько дополнительных моментов, на которые следует обратить внимание.
Хотя измерение электрического тока не так распространено, как измерение напряжения, тем не менее, умение измерять ток является важной и важной способностью. Также важно знать, как измерять ток, чтобы получить лучшее от мультиметра.
Другие темы тестирования:
Анализатор сети передачи данных Цифровой мультиметр Частотомер Осциллограф Генераторы сигналов Анализатор спектра Измеритель LCR Дип-метр, ГДО Логический анализатор Измеритель мощности RF Генератор радиочастотных сигналов Логический зонд Тестирование и тестеры PAT Рефлектометр во временной области Векторный анализатор цепей PXI GPIB Граничное сканирование / JTAG
Вернуться в меню тестирования.. .
Измеритель / тестер заземляющих клещей - это эффективный и экономящий время инструмент при правильном использовании , поскольку пользователю не нужно отключать систему заземления , чтобы произвести измерение или поместить зонды в землю.
Самый простой способ измерить сопротивление заземления с помощью клещей (фото предоставлено: Linemanchannel.com через Youtube)Метод основан на законе Ома, где:
R (сопротивление) = V (напряжение) / I (ток)
Зажим включает в себя передающую катушку, которая прикладывает напряжение, и приемную катушку, которая измеряет ток.Прибор подает известное напряжение на всю цепь, измеряет результирующий ток и вычисляет сопротивление (см. Рисунок 1).
Рисунок 1 - Метод зажима для измерения сопротивления заземленияМетод зажима требует для измерения полной электрической цепи. У оператора нет датчиков, поэтому он не может настроить желаемую испытательную схему. Оператор должен убедиться, что земля включена в обратный контур. Тестер клещей измеряет полное сопротивление пути (контура), по которому проходит сигнал.Все элементы петли измеряются последовательно.
Этот метод предполагает, что только сопротивление тестируемого заземляющего электрода дает значительный вклад в . На основе математических расчетов метода (будет рассмотрено ниже), чем больше результатов, тем меньше вклад посторонних элементов в считывание и, следовательно, тем выше точность.
Основным преимуществом метода зажима является то, что он быстрый и простой . Заземляющий электрод не нужно отключать от системы, чтобы проводить измерения, не нужно приводить в действие датчики и подключать кабели.
Кроме того, он включает в себя сопротивление соединения и общее сопротивление соединения. Хорошее заземление должно дополняться «соединением», т.е. иметь непрерывный низкоомный путь к земле. Падение потенциала измеряет только заземляющий электрод, а не соединение (для проведения теста соединения необходимо сместить провода).
Поскольку зажим использует заземляющий провод как часть обратной связи, «разомкнутая» или высокоомная перемычка будет отображаться в показаниях.
Проверка сопротивления заземления с помощью токоизмерительных клещей (на фото: токоизмерительные клещи Fluke / заземления; предоставлено Amazon)Измерительные клещи заземления также позволяют оператору измерять ток утечки, протекающий через систему.Если электрод необходимо отсоединить, прибор покажет, течет ли ток, чтобы указать, безопасно ли продолжать.
К сожалению, тестер заземления часто неправильно используется в приложениях, где он не дает эффективных показаний . Метод зажима эффективен только в ситуациях, когда имеется несколько параллельных заземлений. Его нельзя использовать на изолированной земле , так как нет обратного пути .
Следовательно, его нельзя использовать для проверки установки или ввода в эксплуатацию новых объектов.Его также нельзя использовать, если существует альтернативный возврат с более низким сопротивлением, не связанный с почвой (например, с вышками сотовой связи) .
В отличие от случая падения потенциального тестирования, нет возможности проверить результат, то есть результаты должны приниматься «на веру». Зажимной тестер заземления выполняет роль одного из инструментов, которые технический специалист может иметь в своей «сумке», но не единственного инструмента.
Понимание того, как и почему работает метод зажима, помогает понять, где он будет и не будет работать, и как оптимизировать его использование.Как уже упоминалось, метод зажима основан на законе Ома (R = V / I).
Понимание закона Ома и его применения к последовательным и параллельным цепям - это первый шаг к пониманию того, как и почему работает тестер заземления .
На следующем графике показано и объяснено следующее:
В последовательной цепи (рисунок 2) полный ток и полное сопротивление рассчитываются следующим образом:
I t = I 1 = I 2 = I 3
R t = R 1 + R 2 + R 3
В параллельной схеме цепи (рисунок 3), общий ток и полное сопротивление рассчитываются следующим образом:
I t = I 1 + I 2 + I 900 76 3
R t = 1 / (1 / R 1 + 1 / R 2 + 1 / R 3 )
В параллельной последовательной схеме (рисунок 4) общий ток и полное сопротивление рассчитываются следующим образом:
I t = I 1 + I 2 = I 3 = I 4 + I 5
R t = 1 / (1 / R 1 + 1 / R 2 ) + 1 / (1 / R 3 + 1 / R 4 )
Головка тестера заземления клещами включает в себя две жилы (см. Рисунок 5).Одно ядро индуцирует испытательный ток , а другое измеряет , сколько было индуцировано . Входное или первичное напряжение сердечника, индуцирующего испытательный ток, поддерживается постоянным, поэтому ток, фактически индуцированный в испытательной цепи, прямо пропорционален сопротивлению контура.
Рис. 5 - Методология тестирования клещамиПри тестировании клещами важно помнить, что тестеры заземления эффективно измеряют сопротивление контура. Измерения с помощью зажимов - это измерений петли .Чтобы метод зажима работал, должен быть последовательно-параллельный путь сопротивления ( и чем ниже, тем лучше ).
Чем больше электродов или путей заземления в системе, тем ближе результат измерения к действительному электроду при проверке истинного сопротивления .
На следующем рисунке показана конфигурация с полюсным заземлением , одно из наиболее эффективных применений тестера заземления с клещами.
Рисунок 6 - Конфигурация заземления полюсаПринципиальная схема для этой конфигурации следующая ( на основе тестера заземления с зажимами, зажатого вокруг полюса 6 ):
Рисунок 7 - Принципиальная схема для вышеуказанной конфигурации на основе тестера заземления с зажимом, зажатого вокруг полюса 6Зажимной тестер заземления зажимается вокруг одного из электродов и затем измеряет сопротивление всего контура.Остальные заземляющие электроды все параллельны и, как группа, включены последовательно с заземляющим электродом, который измеряется. Если тестер зажимается вокруг полюса № 6 , измерение сопротивления всей петли будет рассчитываться по следующей формуле:
R петля = R 6 + (1 / (1 / R 1 + 1 / R 2 + 1 / R 3 + 1 / R 4 + 1 / R 5 ))
Для шести одинаковых заземляющих электродов с сопротивлением 10 Ом каждый измерение полного сопротивления контура будет:
R контур = 10 + (1 / (1/10 + 1/10 + 1/10 + 1/10 + 1/10))
R контур = 10 + (1 / (5/10))
R контур = 10 + 2
R контур = 12 Ом
Измерение сопротивления контура относительно близко к сопротивлению проверяемого заземляющего электрода .Если бы было 60 одинаковых заземляющих электродов с сопротивлением 10 Ом каждый , измерение полного сопротивления контура было бы:
R контур = 10 Ом + 0,17 Ом = 10,17 Ом
Чем больше заземляющих электродов параллельно, тем меньше влияние сопротивления не проверяемых электродов и тем ближе сопротивление контура к сопротивлению проверяемого электрода. Если измеряемый электрод имеет высокое сопротивление, тест покажет, что существует проблема.
Используя пример с шестью электродами, если бы электрод номер 6 имел сопротивление 100 Ом , а все остальные электроды имели сопротивление 10 Ом , измерение сопротивления контура было бы:
R петля = 100 + (1 / (1/10 + 1/10 + 1/10 + 1/10 + 1/10))
R петля = 100 + (1 / (5/10))
R петля = 100 + 2
R контур = 102 Ом
В следующем примере тестер заземления клещей покажет плохое заземление.Если бы электрод 100 Ом был одним из электродов, которые не измерялись, влияние на общее измерение было бы минимальным:
R петля = 10 + (1 / (1/10 + 1/100 + 1/10 + 1/10 + 1/10))
R петля = 10 + (1 / (41/100))
R петля = 10 + 2,44
R петля = 12,44 Ом
ПРИМЕЧАНИЕ // Обратите внимание, что измеренное сопротивление всегда будет выше, чем фактическое сопротивление проверяемого заземляющего электрода.Любая имеющаяся ошибка является безопасностью, поскольку рекомендации по сопротивлению предназначены для максимального сопротивления заземления.
Это означает, что если измеренное сопротивление ниже целевого уровня для заземляющего электрода , оператор может быть уверен, что фактическое сопротивление также будет ниже целевого.
Подводя итог, помните, что измерение тестером заземления с помощью клещей - это измерение сопротивления всего контура . Необходимо измерить сопротивление контура.Если петли для измерения нет, оператор может создать ее с помощью временной перемычки. Чем больше количество параллельных путей, тем ближе измеренное значение к фактическому сопротивлению заземления испытуемого электрода.
Тестер заземления может легко определить неисправный электрод , есть ли несколько параллельных цепей, последовательно соединенных с измеренным значением, или много параллельных цепей.
Помните, что для измерения сопротивления заземления земля должна входить в цепь.Это предостережение кажется очевидным, но если у вас есть металлические конструкции, связь может быть через них, а не через массу земли.
Ссылка // Руководство по испытаниям заземления зажимов от MEGGER
.Токоизмерительные клещи или просто «токоизмерительные клещи» - это прибор, который используется для измерения тока, протекающего по проводнику. Токоизмерительные клещи переменного тока в основном состоят из трансформатора тока в зажимах, обычно это стержень ТТ. Показания будут отображаться по принципу трансформатора тока.
В то время как токоизмерительные клещи постоянного тока совсем другое дело. Для измерения силы тока в нем используется датчик Холла.
Когда инструмент «зажат» на проводнике, сам проводник действует как первичный, и магнитный поток из-за тока, протекающего через проводник, отсекает вторичную обмотку трансформатора тока.
Ток во вторичной обмотке трансформатора тока преобразуется в напряжение с помощью преобразователя тока в напряжение. Этот сигнал поступает на аналого-цифровой преобразователь. Обычно используется микроконтроллер, который управляет схемой дисплея для текущего чтения.
Блок-схема токоизмерительных клещей переменного токаВ отличие от переменного тока, трансформаторы тока нельзя использовать для измерения постоянного тока. Поэтому для этой цели используется датчик Холла. Используемый элемент Холла реагирует на магнитный поток из-за постоянного тока в проводнике, который создает напряжение на элементе.
Развиваемое напряжение пропорционально току в проводнике. Таким образом, измеряя напряжение, можно определить ток.
Блок-схема токоизмерительных клещей постоянного токаЭффект Холла - это создание разности потенциалов в электрическом проводнике, поперечной току в проводнике, и магнитного поля, перпендикулярного току. Этот эффект был открыт Эдвином Холлом в 1879 году.
Датчик эффекта Холла - это преобразователь, который вырабатывает напряжение, находясь под воздействием магнитного поля.Носители заряда испытывают силу, называемую силой Лоренца. Благодаря этой силе заряды распределяются по поверхности материала, оставляя равные и противоположные заряды на противоположной поверхности, что составляет разность потенциалов, существующую, пока магнитное поле является постоянным.
В токоизмерительных клещах постоянного тока датчик Холла используется в качестве магнитометра. Возникающее таким образом напряжение пропорционально магнитному полю и, следовательно, току.
Несмотря на то, что токоизмерительные клещи в основном используются для измерения тока, в эти приборы добавлена функция измерения напряжения, сопротивления, частоты и т. Д.
.